
An Empirical Study of Architectural Changes in Code Commits
Di Cui

School of Computer Science and Technology,

Xi’an Jiaotong University, Xi’an 710049, China

cuidi@stu.xjtu.edu.cn

Jiaqi Guo

School of Automation Science and Engineering,

Xi’an Jiaotong University, Xi’an 710049, China

jasperguo2013@stu.xjtu.edu.cn

Ting Liu

School of Cyber Science and Engineering,

Xi’an Jiaotong University, Xi’an 710049, China

tingliu@mail.xjtu.edu.cn

Qinghua Zheng

School of Computer Science and Technology,

Xi’an Jiaotong University, Xi’an 710049, China

qhzheng@mail.xjtu.edu.cn

ABSTRACT

The maintenance of software architecture is challenged by fast-

delivery code changes since developers are rarely aware of the

architectural impacts of their code changes. To ease the burdens

of architects, in this work, we proposed a light-weight framework

to identify changes in architectures from code commits automati-

cally. The framework identifies architectural changes without heavy

architecture recovery techniques. Instead, it only takes a code com-

mit as input. The framework, on the one hand, can be integrated

into prevalent continuous integration systems to monitor archi-

tectural changes. On the other hand, it can be plugged into code

review systems to help developers realize the architectural changes

they introduce. Based on the framework, we further conducted

a large-scale empirical study on 368,847 commits of 16 Apache

open projects to study architectural changes. Our study reveals sev-

eral new findings regarding the frequency of architectural change

commits, the common and risky intents under which developers in-

troduce architectural changes, and the correlations of architectural

changes with lines of code and number of modified source files

in commits. Our findings provide practical implications for soft-

ware contributors and shed light on potential research directions

on architecture maintenance.

CCS CONCEPTS

• Software and its engineering→ Software Architecture.

KEYWORDS

Software Quality, Software Architecture, Empirical Study

ACM Reference Format:

Di Cui, Jiaqi Guo, Ting Liu, and Qinghua Zheng. 2020. An Empirical Study of

Architectural Changes in Code Commits. In 12th Asia-Pacific Symposium on
Internetware (Internetware’20), May 12–14, 2021, Singapore, Singapore. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3457913.3457924

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Internetware’20, May 12–14, 2021, Singapore, Singapore
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8819-1/20/11. . . $15.00

https://doi.org/10.1145/3457913.3457924

1 INTRODUCTION

Modern software systems undergo code changes on a day-to-day

basis. The fast delivery and large volume characteristics of code

changes pose critical challenges for the maintenance of software:

code understanding, continuous integration, architecture decay, and

so on. Of particular interest to us is the architecture decay, which is

a class of problems that can lead to increased maintenance effort. It

is usually caused by the introduction of architectural changes that

have not been carefully considered by the systems’ developers [28].

The importance of architectural design decisions and the down-

sides of architecture decay have long been recognized in the re-

search community [28, 40]. But as pointed out in recent studies,

developers, in most cases, are not aware of the architectural impact

of their code changes, and they also rarely discuss architectural

impact during code reviews [40, 53]. As a result, a system’s archi-

tecture is likely to degenerate as the system evolves.

Under the circumstances, architects need to identify a system’s

architectural changes from code changes, analyze its impact, and

refactor the architecture when it is necessary. However, considering

the fast delivery characteristic of code changes, architects have to

do these tedious and time-consuming jobs much more frequently.

Besides, a lack of thorough understanding of architectural changes

on a day-to-day basis, e.g., how often do developers introduce archi-

tectural changes, also makes architects struggle in practice. To ease

the burden of architects, numerous techniques have been proposed

in the community, e.g., architecture recovery, architectural smells

detection, architecture quality measurement, and so on. However,

to the best of our knowledge, no existing work addresses the iden-

tification of architectural changes from developers’ code changes

and locates them in code.

In this paper, we proposed a light-weight architectural change

analysis framework to identify architectural changes from code

commits automatically. Overall, rather than recovering and com-

paring architectures of a system before and after a code commit,

our framework identifies changes in structure dependencies of

code components from code difference of a commit. Recent stud-

ies have revealed that structural dependency is one of the best

proxies for developers’ perception of cohesion and coupling [9, 12].

Hence, changes in structural dependencies will lead to the change

of cohesion and coupling, ultimately causing architectural changes.

Specifically, taken a code commit as input, our framework operates

in two phases to identify architectural changes. In the first phase, it

11

https://doi.org/10.1145/3457913.3457924
https://doi.org/10.1145/3457913.3457924

Internetware’20, May 12–14, 2021, Singapore, Singapore Di Cui, Jiaqi Guo, Ting Liu, and Qinghua Zheng

constructs a change graph, a multi-grained code differences repre-

sentation that we propose, from the input commit. Then, based on

the change graph, we adopt Design Structure Matrix [50], a state-

of-the-art technique for software structural analysis, to identify

changes in structure dependencies. In what follows, we use the

term structural changes and architectural changes interchangeably
to denote changes in structure dependencies. This light-weight

analysis framework, on the one hand, can be easily integrated into

prevalent continuous integration systems (CI) to monitor architec-

tural changes on a day-to-day basis. On the other hand, it can be

deployed on a code review system to facilitate the code review pro-

cess, e.g., highlighting the places where architectural changes are

introduced to attract developers’ attention during the discussion.

Based on this framework, we further conducted a large-scale em-

pirical study on architectural changes. The study results can largely

extend the body of our empirical knowledge regarding architectural

changes in software systems and shed light on potential research

directions in architecture maintenance. To be more specific, we col-

lected 368,847 code commits from 2,571 releases of 16 Apache open

source projects. We then applied our architectural change analy-

sis framework on these commits to identify architectural changes.

Finally, we conducted a thorough qualitative and quantitative analy-

sis on architectural changes. Our study contributes to the following

findings:

(1) On average, there are 53.4% of commits (196,918 out of

368,847) introducing architectural changes. Developers con-

tribute 5.6 code commits per day, among which 3.0 commits

introduce architectural changes. This finding reveals that

architectural changes are frequently introduced on a day-to-

day basis.

(2) Bug fixing is the most common intent when developers in-

troduce architectural changes for having the largest number

of architectural changes. However, when developers imple-

ment and improve the features of a system, they have the

highest probabilities to introduce architectural changes.

(3) Lines of code and number of source files in code commits do

not exhibit a strongly positive correlation with architectural

changes. This finding deviates from our empirical knowledge

that commits that involve a large number of source files or

lines of code prone to cause architectural changes.

Our findings can provide implications for software contribu-

tors and the research community. Since architectural changes are

intensively introduced on a day-to-day basis, it is imperative for

architects to keep monitoring architectural changes and measure

their impact regularly. In addition, it is necessary for developers

to pay more attention on architectural changes in daily activities,

especially when they intend to fix a bug or improve a feature. In

terms of the research community, considering a large number of

architectural changes in a system, it is impractical to warn archi-

tects every other commit that changes architecture and to require

architects to evaluate its impact. To this end, two natural questions

raise: 1) When should architects evaluate the compounding effect

of continuous architectural changes? 2) Are existing architectural

change impact measures ready to be used in practice to alleviate

the burden of architects? The answers to these questions are highly

valuable for the research community.

2 ARCHITECTURAL CHANGE ANALYSIS

FRAMEWORK

In this section, we present our two-phase architectural change anal-

ysis framework. Figure 1 illustrates the workflow of it. Taken a code

commit as input, the framework first constructs a multi-grained

representation of code changes, named Change Graph, from the

commit. With a change graph, we can easily analyze code changes

in multiple levels (e.g., statement, variable, and method). Then, the

framework leverages the Design Structure Matrix technique [50],

or DSM for short, to locate changes in structural dependencies, on

the change graph.

In what follows, we first declare a few important definitions that

are used throughout the paper. Then, we elaborate on the details of

the framework with a running example.

Definition 1 (Code Commit). A code commit can be modeled as
a tuple with its hash ID and a set of modified files FileSet :

Commit = ⟨ID, FileSet⟩ (1)

FileSet =
{(
f 0
1
, f 1

1

)
, · · · ,

(
f 0N , f

1

N

)}
(2)

where N denotes the number of modified files, and for a file fj ,(
f 0j , f

1

j

)
denotes the file before and after the commit.

Definition 2 (ChangeGraph).A change graph is amulti-grained
representation of code changes in a commit. It is a directed graph,
where vertexes are change units {CUi } in a commit and edges are
change relations {CRj } defined over {CUi }.

Definition 3 (Change Unit). A change unit CU represents a
modification in a source file:

CU = ⟨f ile,operation, ctype,bline, eline, cname⟩ (3)

operation ∈ {Insert(t1),Update(t2),Delete(t3)}, (4)

where f ile denotes the source file in which a modification is intro-
duced, and operation denotes the type of operation applied in the mod-
ification. ctype represents the type of code that are modified. ctype
ranges over declaration, statement and expression, among which ex-
pression has more than 90 subtypes [2]. bline and eline represent the
start line number and end line number of the modification in the
source file, respectively. cname represents the identifier of a change
unit. It exists only if the ctype of this change unit is declaration.

Definition 4 (Change Relation). A change relation CR is de-
fined as the relation between two change units. We consider three
types of relations that have been shown to be effective in modeling
relations in code changes [23]:

• Contain, referred as Con, indicates that change unit b is
contained in unit a.

• Def-use, referred as DU, indicates that change unit b invokes
the definition of the unit a. In most cases, the ctype of a is the
declaration of variable, field or method.

• Replace, referred as Rep, denotes that change unit b is com-
mitted to replace the unit a.

Definition 5 (Structural Change). A structural change is de-
fined as a change in structural dependencies among code components.

12

An Empirical Study of Architectural Changes in Code Commits Internetware’20, May 12–14, 2021, Singapore, Singapore

Phase I: Change Graph Construction Phase II: Architectural Change Mining

Commit Change GraphChange Units Change DSM Structural Change

Detecting Code
Difference

Finding Change
Relations

Constructing
Change DSM

Mining Structural
Change

Figure 1: The Workflow of Architectural Change Analysis Framework.

A structural change is introduced if there exists change relations be-
tween a pair of change units that occur in different source files. These
change relations will ultimately cause changes in the cohesion and
coupling of the software system, and consequently, lead to changes in
the architecture [9, 40].

2.1 Phase I: Change Graph Construction

Taken a code commit Commit = ⟨ID, FileSet⟩ as input, the goal
of this phase is to construct a change graph. Specifically, we first

detect all code changes from the commit to construct change units,

and then we explore all relations between each pair of change units.

To detect code changes, we leverage GumTree [5], a state-of-the-

art code difference detection tool. Concretely, for each file

(
f 0i , f

1

i

)
in FileSet , GumTree parses f 0i and f 1i into their corresponding

abstract syntax trees AST0 and AST1, respectively. Next, it finds out
the differences in the two ASTs. The output of GumTree is a set of
edit actions. An edit action EA

(i, j)
k is defined as follows:

EA
(i, j)
k = {op, (n0,p0), (n1,p1)}, (5)

where op denotes the type of action on AST0, including add, delete,

update and move. (n0,p0) denotes the node in AST0 that receives
the action and its position in the tree. Accordingly, (n1,p1) denotes
the node in AST1 that is affected by the action and its position. If

the action is add, (n0,p0) comes to be (∅, ∅). Similarly, if the action

is delete, (n1,p1) becomes (∅, ∅).

Next, we construct change units from a set of edit actions with

Spoon [41], a tool for source code analysis and transformation ac-

cording to the work of Falleri et al. [17]. For a source file, Spoon can

parse it into a set of concise program units. Thus, we iteratively

examine each changed AST:(ni ,pi) in edit actions and map it into

parsed program units with Spoon based on its AST position: pi . As
a result, we obtain a set of change units with Spoon.

At last, we enumerate each pair of change units to find out

relations between them. Specifically, for a pair of change units, we

determine whether there exists a relation between them based on

the code element API of Spoon (CtElement). Based on the reference

API of Spoon (CtReference), we further classify the relation into

types (Contain, Def-use, and Replace). To this end, we construct a
change graph from the input commit.

2.2 Phase II: Architectural Change Mining

In this phase, we aim to systematically mine structural changes on

a change graph. To do so, we leverage the design structure matrix

L0 L1 src/java/org/apache/cassandra/config/Schema.java L0 L1 src/java/org/apache/cassandra/service/StorageService.java

public static final ImmutableSet<String> replicatedSystemKeyspaceNames = 4033 4033 else
72 + ImmutableSet.of(Tracing.TRACE_KS, Auth.AUTH_KS); 4034 4034 {
294 + private Set<String> getNonSystemKeyspacesSet() 4035 - List<String> nonSystemKeyspaces = Schema.instance.getNonSystemKeyspaces();
295 + { 4035 + List<String> userKeyspaces = Schema.instance.getUserKeyspaces();
296 + return Sets.difference(keyspaces.keySet(), systemKeyspaceNames); 4036 4036
297 + } 4037 4037 + if (userKeyspaces.size() > 0)

294 304 public List<String> getNonSystemKeyspaces() 4038 - int specialTableCount = 0;
295 305 { 4039 - if (nonSystemKeyspaces.contains("system_traces"))

return ImmutableList.copyOf(Sets.difference(keyspaces.keySet(), 4040 4038 {
296 - systemKeyspaceNames)); 4041 - specialTableCount += 1;

306 + return ImmutableList.copyOf(getNonSystemKeyspacesSet()); 4039 + keyspace = userKeyspaces.iterator().next();
307 + } AbstractReplicationStrategy replicationStrategy = Schema.instance
312 + public List<String> getUserKeyspaces() 4040 + .getKeyspaceInstance(keyspace).getReplicationStrategy();
313 + { 4041 + for (String keyspaceName : userKeyspaces)

return ImmutableList.copyOf(Sets.difference(getNonSystemKeyspacesSet(), 4042 + {
314 + replicatedSystemKeyspaceNames)); if (!Schema.instance.getKeyspaceInstance(keyspaceName)

297 315 } 4043 + .getReplicationStrategy().hasSameSettings(replicationStrategy))
… throw new IllegalStateException("Non-system keyspaces don't

have the same replication settings,
L0 L1 src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java 4044 + effective ownership information is meaningless");

306 + public boolean hasSameSettings(AbstractReplicationStrategy other) 4045 + }
307 + { 4046 + }

return getClass().equals(other.getClass()) && 4047 + else
308 + getReplicationFactor() == other.getReplicationFactor(); 4048 + {
309 + } 4049 + keyspace = "system_traces";

4042 4050 }
L0 L1 src/java/org/apache/cassandra/locator/NetworkTopologyStrategy.java 4043 - if (nonSystemKeyspaces.size() > specialTableCount)

203 + @Override throw new IllegalStateException("Non-system keyspaces don't
204 + public boolean hasSameSettings(AbstractReplicationStrategy other) have the same replication settings,
205 + { 4044 - effective ownership information is meaningless");

return super.hasSameSettings(other) && 4045 -
206 + ((NetworkTopologyStrategy) other).datacenters.equals(datacenters); 4046 - keyspace = "system_traces";
207 + } …

Figure 2: Code Changes in Commit f4b21f5 fromCassandra.

(DSM) technique to analyze the relation between change units in a

change graph. A design structure matrix (DSM) is a square matrix

in which rows and columns are labeled by the same list of elements.

In this context, elements are all change units in the change graph. A

marked cell in row x and column y, cell(x, y), means that the element

in row x depends on the element in column y. The mark in cells can

denote different types of relations between two elements. Thus, we

can exhaustively examine all the relations between change units

and detect a set of suspect change relations as structural changes:

SCR Set = {⟨CUa ,CUb ⟩ | CUa . f ile , CUb . f ile,a , b} , (6)

where CUa and CUb denotes two individual change units. If they

have a change relation and belong to different files, they are defined

as a suspect change relation in structural change.

Given a commit, if it has a not empty suspect change relation set,

it is diagnosed with structural changes. Consequently, we term this

commit as a structural change commit or an architectural change
commit. Notably, the framework does not need to recover the archi-

tectures of a system before and after code changes. This technique

does require the ASTs before and after the commit of the modi-

fied program to compute the relations between change units using

Spoon. Hence, it is light-weight enough to be adopted in practice

to detect architectural changes.

2.3 Running Example

Figure 2 visualizes changes of Schema.java in a code commit with

ID f4b21f5 from Cassandra [1]. These changes involve that 9 lines
of code are inserted and 1 lines of code are deleted.

13

Internetware’20, May 12–14, 2021, Singapore, Singapore Di Cui, Jiaqi Guo, Ting Liu, and Qinghua Zheng

Table 1: The Change Units in Schema.java. The column ‘index’ represents the identifier for a change unit and other columns

represent attributes of change unit defined in Definition 3.

index operation ctype file bline eline cname

#1 t1 Method Schema.java 312 312 org.apache.cassandra.config.Schema.getUserKeyspaces

#2 t1 Method Schema.java 294 294 org.apache.cassandra.config.Schema.getNonSystemKeyspacesSet

#3 t1 Field Schema.java 72 72 org.apache.cassandra.config.Schema.replicatedSystemKeyspaceNames

#4 t3 MethodInvocation Schema.java 296 296 *

#5 t1 Return Schema.java 314 314 *

#6 t1 VariableAccess Schema.java 306 306 *

#7 t1 Return Schema.java 296 296 *

#8 t2 Field Schema.java 59 59 org.apache.cassandra.config.Schema.keyspaces

#9 t2 Field Schema.java 71 71 org.apache.cassandra.config.Schema.systemKeyspaceNames

#10 t2 Field Auth.java 56 56 org.apache.cassandra.auth.Auth.AUTH_KS

#11 t2 Field Trace.java 54 54 org.apache.cassandra.tracing.Tracing.TRACE_KS

#12 t2 Method * * * com.google.common.collect.ImmutableSet.of

#13 t2 Method * * * com.google.common.collect.ImmutableList.copyOf

#14 t2 Method * * * com.google.common.collect.Sets.difference

#12
#10

#11

#3

#5

#13
#1

#2

#14

#6

#4

#8

#7

#9

DU
DU

DU

DUDU
Con

DU

DU Con

DU

DU

DU

 Rep

DU

DU
DU

DU

t1

t2

DSM #13 #14 #2 #12 #10 #11 #3 #1 #5 #8 #9 #7 #4 #6

#13 (13)

#14 (14)

#2 (2)

#12 (12)

#10 (10)

#11 (11)

#3 DU DU DU (3)

#1 (1)

#5 DU DU DU DU Con (5)

#8 (8)

#9 (9)

#7 DU Con DU DU (7)

#4 DU DU (4)

#6 DU DU Time (6)

(a) Change Graph (b) Change DRspace

t3

(a) Change Graph

#12
#10

#11

#3

#5

#13
#1

#2

#14

#6

#4

#8

#7

#9

DU
DU

DU

DUDU
Con

DU

DU Con

DU

DU

DU

Time

DU

DU
DU

DU

t1

t2

DSM #13 #14 #2 #12 #10 #11 #3 #1 #5 #8 #9 #7 #4 #6

#13 (13)

#14 (14)

#2 (2)

#12 (12)

#10 (10)

#11 (11)

#3 DU DU DU (3)

#1 (1)

#5 DU DU DU DU Con (5)

#8 (8)

#9 (9)

#7 DU Con DU DU (7)

#4 DU DU (4)

#6 DU DU Rep (6)

(a) Change Graph (b) Change DRspace

t3

(b) ChangeDSMand Stuctural Change

Figure 3: The Change Graph, Change DSM and Structural

Change in Schema.java

Change Graph Construction. In this phase, the framework con-

structs a change graph for an input commit. Specifically, it first

obtains all change units in the commit with tools GumTree and

Spoon. For changes of Schema.jave in Figure 2, it successfully ob-

tains 14 change units. The cname of #4 - #7 are marked with ‘*’,

because their ctype are not declaration. The f ile of #12 - #14 are
marked with ‘*’ for these units are located in third party library and

they are introduced as API usage. Then, our framework identifies

change relations between each pair of change units. As a result, for

the 14 change units in Schema.java, 16 change relations are identi-
fied, including 13 instances of Def-use, 2 instances of Contain, and
1 instance of Replace. Having identified change units and change

relations, we are ready to construct a change graph for this commit.

Figure 3(a) visualizes the change graph of changes in Schema.java.
Vertexes (Change units) in different colors represent different types

of operation. The text in each vertex refers to its index in Table 1,

and the text on each edge refers to different change relations in

Definition 4.

Architectural Change Mining. In this phase, the framework

mines structural changes from the constructed change graph with

the design structure matrix technique. The 14 change units in Fig-

ure 3(a) can also be analyzed into a change DSM, as is shown in

Figure 3(b). Essentially, a change DSM is a square matrix in which

rows and columns are labeled by the same list of change units in

the change graph. The mark in cells can denote different types of

relations between two elements. For example, the cell(#3, #10) in

Figure 3(b), is marked with “DU”, which means that change unit

#10 has the Def-use relation with the unit #3. A cell with marked

with rectangle means that there is a change relation between two

change units and the two change units involve two different source

files. As we have defined above, such interactions between change

units induce structural changes. We can further two instances of

change relation involve structure changes. To this end, the input

commit is finally regarded as an architectural change commit.

3 EMPIRICAL STUDY

Based on the architectural change analysis framework, we conduct

a large-scale empirical study on architectural change commits in

popular software systems to understand their characteristics. To

this end, we explore the following four research questions:

RQ1: How often do developers introduce architectural change com-
mits? Intuitively, architectural changes should be carefully and

seldom made by developers, as they have long-term impact on soft-

ware systems. In this research question, we test this hypothesis by

examining the number of architectural change commits in software

systems. Moreover, by studying the introduction frequency, we

can reveal architectural change commits are introduced on a day-

to-day basis or they are introduced in a concentrated period. The

answer to this question can advance our empirical understanding

about architectural changes, and it can show the necessity of timely

architectural changes detection.

RQ2: What are common and risky intents under which developers
introduce architectural changes? This research question investigates

the most common intents of developers under which architectural

changes are introduced, and the most risky intents under which

developers have the highest probability to introduce architectural

changes. The answer to this question can extend our empirical

knowledge of the impact of developers’ intents on architectures.

RQ3: Are modified numbers of lines of code in code commits practical
indicators of architectural changes? Lines of code in commits is

one of the important features to characterize commits in change

prediction approaches [21, 31, 32, 44, 47], as intuitively, it can reflect

the complexity behind changes. In this research question, we aim at

investigating the correlation between lines of code in commits and

architectural changes. The answer to this question reveals whether

the large number of code is a symptom for architectural changes.

14

An Empirical Study of Architectural Changes in Code Commits Internetware’20, May 12–14, 2021, Singapore, Singapore

Table 2: The Information of Selected Subjects. ‘Time Span

(Months)’ indicates how many months that each subjects’

commits span over. ‘#Cmt’ and ‘#StrCmt’ indicate the num-

ber of commits and architectural change commits.

Subject Time Span (Months) #Cmt #StrCmt

Camel 3/2007 to 1/2019 (142) 43,789 26,825 (61.3%)

Cassandra 3/2009 to 1/2019 (118) 15,008 8,306 (55.3%)

Cxf 4/2008 to 1/2019 (129) 28,969 16,779 (58.0%)

Hadoop 1/2006 to 1/2019 (156) 18,540 10,750 (58.0%)

Hbase 4/2007 to 1/2019 (141) 20,404 4,094 (20.1%)

Hive 9/2008 to 1/2019 (124) 61,193 36,627 (59.9%)

Log4j2 5/2010 to 1/2019 (104) 41,848 24,217 (57.9%)

Solr 9/2001 to 1/2019 (208) 15,262 10,206 (66.9%)

Mahout 1/2008 to 9/2018 (132) 8,070 5,715 (70.8%)

Nifi 12/2014 to 1/2019 (49) 15,790 6,108 (38.7%)

Wicket 9/2004 to 1/2019 (172) 10,299 4,427 (43.0%)

Zookeeper 5/2008 to 1/2019 (128) 3,629 2,126 (58.6%)

Groovy 8/2003 to 1/2019 (185) 4,825 3,124 (64.8%)

Karaf 7/2005 to 1/2019 (162) 47,001 23,608 (50.3%)

Kafka 8/2011 to 1/2019 (89) 31,255 10,804 (34.6%)

Flink 12/2010 to 1/2019 (97) 2,965 1,731 (58.8%)

Total 49 to 208 Months 368,847 196,918 (53.4%)

RQ4: Are involved numbers of source files in code commits practical
indicators of architectural changes? Similar to lines of code, the

number of modified files in a commit is also an important feature in

prevalent change prediction approaches [21, 31, 32, 44, 47]. Hence,

in this question, we aim to investigate the correlation between the

number of modified files and architectural changes. The answer to

this question sheds light on whether the large number of modified

files is a symptom for architectural change.

3.1 Data Collection

As we need systems with a large number of code changes, the num-

ber of code commits is the overarching criteria used when selecting

subject systems for investigation. Moreover, since the Spoon tool

used in our framework can only be applied to Java systems, we only

select those systems that are primarily written in Java. To this end,

we select the 16 most starred Apache open source projects as our

study subjects. Notably, these 16 projects cover different domains,

and they have been widely used in architecture studies [16, 28]. For

each selected subject, we collect code commits from its version con-

trol system (Git [3]) by using git log [4] command. We additionally

use JGit [6], a lightweight programming interface to manipulate

Git, to automatically check out modified files from each commit.

As a result, we collect 368,847 code commits in total, and we use all

of them in our study. Table 2 presents the details of each selected

subjects and the number of commits we collected for each subject.

3.2 RQ1: How often do developers introduce

architectural change commits?

3.2.1 Setup. In this research question, we investigate the number

of architectural change commits in a software system and the in-

troduction frequency of them. To answer the question, we analyze

all 368,847 commits using our analysis framework and identify ar-

chitectural change commits from them. To study the frequency, we

examine how many architectural change commits are introduced in

each day, which is denoted as architectural change frequency.

As a comparison, we also examine the number of commits intro-

duced in each day, denoted as code change frequency. Moreover,

we compute the Pearson correlation coefficient between them to

understand their correlation.

3.2.2 Results. The column ‘#StrCmt’ in Table 2 presents the num-

ber of architectural change commits that are identified by our anal-

ysis framework for each subject. Overall, there are 53.4% of code

commits (196,918 out of 368,847) introducing architectural changes.

Such a large proportion of architectural change commits in a sys-

tem is surprising, as we may expect that architectural changes are

carefully and seldommade by developers. Considering the large pro-

portion of architectural changes, it is highly imperative to monitor

architectural changes to effectively avoid architecture decay.

The column ‘Commit per Day’ in Table 3 presents the code

change frequency and architectural change frequency. On average,

developers contribute 5.6 commits per day, and 3.0 of them are

architectural change commits. This observation means that archi-

tectural change commits are highly likely to be introduced on a

day-to-day basis instead of in a concentrated period. The Pearson

correlation coefficient between them is 0.85, which also indicates

that they are strongly correlated.

As an answer to RQ1, by inspecting the proportion and frequency

of architectural change commits, we find that developers intensively

introduce architectural changes on a day-to-day basis.

3.3 RQ2: What are common and risky intents

under which developers introduce

architectural change commits?

3.3.1 Setup. In this research question, we aim to understand de-

velopers’ intents under which they introduce architectural changes.

Given the large number of commits we study (368, 847), it is infea-

sible to manually inspect each of them to determine developers’

intents. But we observe that lots of commits refer to corresponding

reports in issue tracking systems via issue IDs, and each report

is assigned a type to indicate its purpose. (e.g., Bug, Improvement,
and New Feature). Intuitively, commits for different types of reports

exhibit different intents of developers. For example, when a devel-

oper introduces a commit that refers to a report with type Bug, it is
highly likely that he/she aims to fix the bug described in the report.

Such an intuition has already formed the basis of empirical studies

on bug fixing [49, 54]. Therefore, we regard the report type as a

proxy for developers’ intent behind a commit. For all 368, 847 com-

mits, we attempt to link each of them to its corresponding report

and extract the report type. In Jira [7], each report is assigned a

unique issue number following a “name-number” pattern where

name represents the project/component name. We link reports by

heuristically searching commit messages with issue numbers fol-

lowing the work of Zhong et al [54]. If a commit can be linked with

multiple reports, we select the major one according to sentence

structure of commit message using natural language processing

techniques. As a result, there are 68% of commits successfully linked

to their corresponding reports. In the following intent analysis, we

only consider these 68% commits. In this study, we mainly study 5

15

Internetware’20, May 12–14, 2021, Singapore, Singapore Di Cui, Jiaqi Guo, Ting Liu, and Qinghua Zheng

Table 3: The Experimental Results of RQ2-RQ4. ‘Cmt’ and ‘StrCmt’ are short for commits and architectural chagne commits,

respectively. ‘pc’ indicates the Pearson correlation coefficient. ‘τ ’ indicates the Kendall-τ correlation coefficient.

Subject Intent of StrCmt (%) LOC per Commit Commit per Day File per Commit

Bu. Im. Ne. Ta. Te. Ot. t1 t2 t3 Cmt StrCmt τ AUC Cmt StrCmt pc Cmt StrCmt τ AUC

Camel 36 41 14 8 1 0 90 33 36 159 92 0.49 0.85 10.2 6.3 0.89 6.5 6.0 0.45 0.79

Cassandra 54 31 8 5 1 0 96 70 61 227 127 0.53 0.87 4.3 2.8 0.85 5.8 5.5 0.55 0.82

Cxf 60 27 7 5 0 0 97 59 46 202 117 0.48 0.85 7.4 4.3 0.98 5.9 5.6 0.50 0.80

Hadoop 48 19 2 27 2 1 162 78 68 308 163 0.49 0.85 13 7.7 0.94 6.2 5.8 0.47 0.80

Hbase 58 22 3 15 2 0 135 82 69 286 157 0.51 0.86 9.8 5.7 0.88 5.9 5.7 0.54 0.82

Hive 65 14 2 18 1 0 333 223 162 717 402 0.47 0.85 4.5 3.0 0.97 5.9 5.8 0.46 0.79

Log4j2 46 36 11 2 0 4 78 27 40 145 80 0.45 0.82 3.2 1.4 0.81 5.1 4.6 0.42 0.72

Solr 40 27 5 7 2 18 120 81 63 264 140 0.47 0.83 8.2 4.1 0.88 5.3 4.8 0.49 0.78

Mahout 46 41 9 3 0 1 150 81 103 334 181 0.51 0.86 1.1 0.6 0.83 7.4 6.2 0.44 0.77

Nifi 52 36 5 6 0 0 238 119 108 465 260 0.50 0.87 3.8 2.2 0.89 6.2 5.8 0.50 0.82

Wicket 60 30 4 4 0 1 68 36 44 148 80 0.41 0.81 6.0 2.0 0.75 5.0 4.3 0.55 0.81

Zookeeper 66 20 2 9 3 0 174 82 77 333 200 0.54 0.89 0.7 0.4 0.75 6.6 6.2 0.56 0.84

Groovy 82 13 4 1 0 0 67 67 42 176 85 0.30 0.76 4.9 1.0 0.61 4.2 3.4 0.47 0.76

Karaf 45 36 14 2 1 2 133 46 76 255 125 0.40 0.79 3.3 1.3 0.76 5.1 4.4 0.53 0.79

Kafka 65 17 1 15 1 0 139 103 61 303 182 0.50 0.88 2.8 1.8 0.92 6.6 6.9 0.42 0.79

Flink 53 28 4 13 1 0 188 90 114 392 228 0.47 0.83 5.8 3.4 0.93 6.2 6.0 0.44 0.77

Average 55 27 6 9 1 2 142 80 73 295 164 0.47 0.84 5.6 3.0 0.85 5.9 5.4 0.49 0.79

Table 4: Report Type Definition.

Type Description

Bug A defect in source code is founded.

Improvement An improvement to an existing feature or task.

New Feature A new feature which is yet to be developed.

Task A task that needs to be done to achieve team’s goal.

Test An integration of test code.

Other The other report types defined in the issue system.

Bug Improvement Task New Feature Test Other
Intent

0

15

30

45

60

75

90

Pr
op

or
tio

n
of

 S
trC

m
t (

%
)

54.3%
61.9%

70.7%
64.9%

51.4%

61.9%

Figure 4: The Proportion of Architectural Change Commits

in Different Intents.

standard report types defined in Jira, the issue tracking system of all

study subjects, namely, Bug, Improvement, New Feature, Task, and
Test. Other report types (e.g., Documentation, Brainstorming, and
Dependency Update) are all categorised in Other. Table 4 provides a
detailed definition for each of them. Through a careful examination

of reports with type Task, we find that in most cases, they either

require implementing a feature of a system or improve a feature.

3.3.2 Results. Overall, 55% of commits are introduced when devel-

opers try to fix bugs (Bug), followed by Improvement (27%), Task

Bug Improvement Task New Feature Test Other
Intent

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Di
st

rib
ut

io
n

of
 C

ha
ng

e
U

ni
ts

[1, 10)
[10, 20)

[20, 30)
[30, 40)

[40,)

Figure 5: The Distribution of Change units in Different In-

tents.

(9%), New Feature (6%), Test (1%), and Other (2%). The column ‘In-

tent of StrCmt’ in Table 3 reports the distribution of developers’

intents in all architectural change commits. We observe that the

distribution is nearly the same in all studied subjects, where most

of them (55%) are introduced for bug fixing.

To gain a deeper understanding, we break down commits by

intents and for each intent, we calculate how many commits in-

troduce architectural changes. As shown in Figure 4, Task, New
Feature, and Improvement have a significantly larger proportion

of architectural change commits than that of the other three in-

tents. Such a finding, on the one hand, aligns with our empirical

knowledge that the code modified when developers implement or

improve features of a system, usually has more dependencies to

existing code, which eventually has a higher probability to affect

the system’s architecture [40]. On the other hand, the finding devi-

ates from our understanding that bug fixing would not often alter

a system’s architecture [40]. But in fact, given a bug fixing commit,

it has more than 50% of probability to change the architecture.

As we have described in Section 2, the number of change units

in an architectural change commit indicates the number of places

16

An Empirical Study of Architectural Changes in Code Commits Internetware’20, May 12–14, 2021, Singapore, Singapore

All Insert(t1) Update(t2) Delete(t3)
Operation

0.6

0.7

0.8

0.9

1.0

AU
C

M
ea

su
re 0.85

0.70

0.86
0.81

Figure 6: The AUC measure of lines of code in commits.

where architectural changes are introduced in the commit. Hence,

by analyzing it, we can explore the characteristics of architectural

changes under different intents of developers. We observe that the

averaged number of change units in New Feature (20), Task (18),

and Improvement (13) are significantly larger than that of Other (9),
Bug (8) and Test (8). Moreover, as presented in Figure 5, the number

of change units in New Feature (20), Task (18), and Improvement
(13), are more sharply distributed in the interval: [20,+∞), com-

pared with the other three intents. These observations imply that

developers tend to introduce much more code that would intro-

duce changes in an architecture when they implement or improve

features.

As an answer to RQ2, we find that bug fixing is the most common

intent when developers introduce architectural changes. This is

partly resulting from the fact that a large number of commits in a

system are introduced for bug fixing. In addition, we find that it is

when developers try to implement or improve features of a system

that they are more likely to introduce architectural changes.

3.4 RQ3: Are modified numbers of lines of code

in code commits practical indicators of

architectural changes?

3.4.1 Setup. In this research question, we aim to study the corre-

lation between lines of code in commits and architectural changes.

We study the correlation with two different methods. On the one

hand, we evaluate the Kendall-τ correlation coefficient [19] be-

tween lines of code in commits and binary labels for architectural

change commits (1 for architectural change commits, otherwise 0).

We select Kendall-τ correlation coefficient because we observe that

lines of code are not normally distributed.

On the other hand, we propose a simple method to identify archi-

tectural change commits based solely on lines of code. It is designed

based on the hypothesis that code commits with a large number

of code are prone to introduce architectural changes. Intuitively,

if this simple method works well, we can conclude that lines of

code has a strong correlation with architectural changes, and it

can be considered as a symptom for architectural change commits.

Specifically, for all commits CmtSeti in a study subject Si , we first
calculate lines of codemloc that are modified in each commit. Then,

each commit is assigned a normalized score:

score =
mloc

maxj ∈ |CmtSeti |mloc j
, (7)

where score apparently ranges over 0 to 1. Given a cut-off value

x , we regard those commits that have scores greater than x as

architectural change commits. By comparing with the architectural

change commits that are identified by our analysis framework, we

can measure the performance of this simple method. We select the

Area Under the receiver operating characteristic Curve (AUC) as
our performance measures, as it is independent of a cut-off value

and it is not impacted by the skewness of data.

Moreover, to get an in-depth understanding of the correlation,

we further break down a commit into several change units, group

change units by its operation (Insert(t1), Update(t2), Delete(t3)),
and calculate lines of code that are modified in each group. Con-

sidering the f4b21f5 commit in Figure 2, there are 50 lines of code

that are modified, including 32 lines of code in t1, 9 lines of code in
t2, and 9 lines of code in t3. Then, we evaluate the AUC for each

group to understand which group is more closely correlated with

architectural changes.

3.4.2 Results. The column ‘LOC per Commit’ in Table 3 presents

the computation results of each study subject. On average, there are

295 lines of code in a commit, including 142 lines of code (48.1%) in

t1(Insert), 80 lines of code (27.1%) in t2(Update), and 73 lines of code
(24.7%) in t3(Delete). As a comparison, there are only 164 lines of

code in an architectural change commits on average, which is much

smaller than that of commits. The Kendall-τ correlation coefficient

between lines of code and architectural change commits is 0.47,

indicating that they are positively but not strongly correlated [15].

The averaged AUC measured is 0.84, which also suggests that they

are positively but not strongly correlated.

The box plot in Figure 6 shows the AUC measure for each

group. Through this breakdown of commits, we observe that among

the three operations (Insert(t1), Update(t2), Delete(t3)), the Update
achieves the highest median AUC (0.86), significantly higher than

that of Insert (0.70) and Delete (0.81), and even higher than the

one using allmloc (0.85). This observation suggests that the more

lines of code that a developer updates, the more likely that he/she

introduce architectural changes.

As an answer to this RQ, through a thorough quantitative anal-

ysis, we find that lines of code and architectural changes are pos-

itively but not strongly correlated. Among the three operations,

Update is the one that most closely correlates with architectural

changes.

3.5 RQ4: Are involved numbers of source files

in code commits practical indicators of

architectural changes?

3.5.1 Setup. In this research question, we study the correlation be-

tween number of source files involved in a commit and architectural

changes. Similar to the setup in RQ3, we evaluate the Kendall-τ cor-

relation coefficient between the number of source files and binary

labels for architectural change commits (The number of source files

is not normally distributed).

17

Internetware’20, May 12–14, 2021, Singapore, Singapore Di Cui, Jiaqi Guo, Ting Liu, and Qinghua Zheng

1 2 3 4 5 6 7 8 9 10
Number of Source Files

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

De
ns

ity
 F

un
ct

io
n

Figure 7: The Cumulative Density Function of the Number

of Files of Architectural Change Commits

In addition, we also propose a simple method to identify archi-

tectural change commits based solely on the number of source files.

Specifically, for all commits CmtSeti in a study subject Si , we cal-
culate how many source files are modified in each commit, and we

assign a normalized score for each commit based on the number:

score =
mf ile

maxj ∈ |CmtSeti |mf ilej
, (8)

wheremf ile denotes the number of modified source files. Later on,

we evaluate the performance of this method via the AUC measure.

We present the computation results in the column ‘File per Commit’

of Table 3. We also visualize the distribution of the number of mod-

ified source files in architectural change commits with cumulative

density function (CDF) in Figure 7.

3.5.2 Results. The column ‘File per Commit’ in Table 3 presents

the computation results. On average, there are 5.9 source files mod-

ified in a commit, while there are 5.4 source files modified in ar-

chitectural change commits. The Kendall-τ correlation coefficient

between number of source files and architectural change commits

is 0.47, showing that they only have medium correlation [15]. The

low averaged AUC value (0.79) also demonstrates their medium

correlation. The CDF in Figure 7 provides some insights for this

small correlation: 1) There are 12.3% architectural change commits

that only modify one source files; 2) The density curve grows slowly

when the number of source files is larger than 5.

As an answer to RQ4, we find that the number of source files in

commits and architectural changes are loosely correlated, and there

is no strong evidence to suggest that code commits with a large

number of source files prone to introduce architectural changes.

4 DISCUSSION

4.1 Correctness Analysis

4.1.1 Setup. We have manually analyzed 400 sampled commits,

including 200 samples with detected architectural changes (Positive

samples) and 200 samples without undetected architectural changes

(Negative samples), to verify the correctness of our implementation.

Table 5: The manual analysis results

Label Yes Not Sure No

Positive Samples (200) 132 25 43

Negative Samples (200) 146 18 36

We invite 3 students to manually review these commits. Each com-

mit undergoes rigorously assessment and is assigned with three

labels: ‘Yes’, ‘No’, and ‘Not sure’. For a commit, Label: ‘Yes’ repre-
sents that our detection result is correct, and Label: ‘No’ represents
that our detection result has mistakes. Label: ‘Not Sure’ represents
that the correctness of our detection result is uncertain. We present

the manual analysis results in Table 5.

4.1.2 Results. The column ‘Yes’, ‘No’ and ‘Not Sure’ in in Table 5

present the number of commits under each label. For 200 positive

samples, they have 132 samples labelled with ‘Yes’, 25 samples

labelled with ‘Not Sure’, 43 samples labelled with ‘No’. For 200
negative samples, they have 146 samples labelled with ‘Yes’, 18
samples labelled with ‘Not Sure’, 36 samples labelled with ‘No’.
Under these samples, we further calculate that the precision of our

tool is 71%. The recall of our tool is 79% and the F1 measure is 75%.

This suggests the results of our detection tool is reliable for having

relatively high accuracy in detecting architectural changes.

4.2 Implications

We discuss the border implications of our findings for software

contributors and research community.

4.2.1 Software Contributors. It is imperative for software archi-

tects to monitor architectural changes. We have found in RQ1 that

there are 53.4% of commits introducing architectural changes on

average and developers contribute 3.0 architectural change com-

mits per day. These findings suggest that a system’s architecture

is intensively changed on a day-to-day basis. If architects of the

system cannot effectively manage changes in the architecture in

time, the architecture is likely to degrade under the fast-delivery

architectural changes, leading to increased maintenance effort.

In addition, as we have shown RQ2, bug fixing is the most com-

mon intent under which developers introduce architectural changes,

and when developers intent to implement or improve a feature, they

are highly likely to introduce architectural changes. Hence, for the

authors of code changes, it is important to notice the architectural

changes introduced in their commits, especially when intenting to

fix a bug and improve a feature. A recent study also suggests that

being aware of architectural changes can lead to high-quality code

changes [40].

To facilitate monitoring architectural changes and help develop-

ers notice architectural changes, we would like to provide plugins

for prevalent continuous integration systems and code review sys-

tems based on our architectural change analysis framework.

4.2.2 Research Community. Considering the large number of ar-

chitectural change commits in a system, it would be impractical to

warn architects every other commit that changes the architecture

and to require architects to evaluate its impact. To this end, two

natural question raises: 1) When should architects evaluate the

18

An Empirical Study of Architectural Changes in Code Commits Internetware’20, May 12–14, 2021, Singapore, Singapore

compounding effect of continuous architectural changes? 2) Are

existing architectural change impact measures ready to be used in

practice in terms of their effectiveness and efficiency, to alleviate

the burden of architects? The answers to these questions are very

valuable. We leave the study of them as our future work.

4.3 Threat to Validity

There are internal, external and constructive threats to validity

associated to the results we present. The primary internal threat

arises from the definition of structural changes used in our frame-

work. Our architectural change analysis framework only considers

code changes may modify structural dependencies among code

components. However, recent studies have verified that structural

dependencies is one of the best proxies for developers’ perception

of cohesion and coupling [9, 12]. Hence, it would be safe to use

the framework in the empirical study. In terms of external threats,

our study only focuses on 16 subjects that are primarily written

in Java. It remains unclear whether our findings can generalize to

other open-source projects and closed-source industrial projects.

To mitigate this threat, our study subjects are selected from top

starred Apache open projects. They have been widely studied in

software architecture research [28, 34, 35, 50, 51]. In addition, we

also study a large number of commits for each subject to further mit-

igate the threat. To this end, the findings should generalize to other

projects. When it comes to constructive threats, our framework is

built upon several open source tools. During implementations, we

have submitted pull requests to improve the tools.

5 RELATEDWORK

5.1 Architecture Change Study

Several studies have been conducted on architectural changes.

Based on the methods to detect architectural changes, these studies

can be classified into two categories: recovery-based [10, 28] and

metric-based [40, 45]. A representative recovery-based approach is

the work of Duc et al. [28]. They measure architectural changes by

comparing the recovered architectures of a system in two versions

using state-of-the-art recovery techniques [20, 48]. Their methods

are further applied to detect architectural decay in software sys-

tems [29, 45]. The method proposed by Paixao et al. [40] is one of

the representative metric-based approaches. They measure archi-

tecture changes using structural cohesion and coupling metrics.

Their methods are applied to measure the architectural impact of

refactoring [39]. Compared with these studies, our work detect

architectural changes of commits in a fine grain. With the assist

of our tool, we can locate concrete code changes contributing to

architectural changes.

5.2 Code Commit Analysis

Over the past decades, numerous approaches are proposed to help

developers analyze code changes in commits. These techniques

can be classified into three categories including commit diff de-

tection, commit message generation and commit change pattern

detection. Commit diff detection techniques aim at computing code

changes between two versions of source files. The most influential

techniques of this category are tree-based approaches which can

capture syntactic code changes [17, 18, 22] compared with text-

based approaches [8, 13, 14, 16, 43]. For example, ChangeDistiller

[18] use a general tree difference identification algorithm to gener-

ate edit scripts based on coarse-grained ASTs of two source files.

GumTree [17] further generates edit scripts which can well reflect

developer intent using several heuristics. Commit message gener-

ation techniques [11, 24, 30, 33, 36, 42] aim at generating natural

language description of code changes in commits. For example,

ChangeScribe [30, 33] generates commit message using heuristics.

Jiang et al. [24] and Moreno et al. [36] further leverage neural

networks to improve the performance of this technique. Commit

change pattern detection techniques aim at discovering frequent

patterns in code commits during software evolution [13, 23, 25–

27, 37, 38, 46, 52, 55]. A more recent work is CLDiff [23], a general

tool to discover code change in a concise format. Compared with

these state-of-the-art techniques, our work aims at studying the

architectural impact of code changes.

6 CONCLUSION

In this work, we propose an automated framework to identify

changes in architectures from code commits. The framework does

not rely on architecture recovery techniques, and it only takes a

code commit as input. Based on the framework, we further conduct

a large-scale empirical study on 368,847 commits of 16 Apache

open projects to characterize architectural changes. Our empirical

findings, on the one hand, advance our understanding about archi-

tectural changes. On the other hand, the findings provide practical

implications for software contributors and shed light on potential

research directions on architecture maintenance.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Program of China

(2018YFB1004500), National Natural Science Foundation of China

(61632015, 61772408, U1766215, 61721002, 61532015, 61833015, 61902306,

62072351), China Postdoctoral Science Foundation (2019TQ0251,

2020M673439), Youth Talent Support Plan of Xi’an Association

for Science and Technology (095920201303), Ministry of Educa-

tion Innovation Research Team (IRT 17R86), and Project of China

Knowledge Centre for Engineering Science and Technology.

REFERENCES

[1] 2019. Cassandra. https://cassandra.apache.org

[2] 2019. eclipse. https://help.eclipse.org

[3] 2019. Git. https://git-scm.com

[4] 2019. Git Log. https://git-scm.com/docs/git-log

[5] 2019. GumTree. https://github.com/GumTreeDiff/gumtree

[6] 2019. JGit. https://www.eclipse.org/jgit

[7] 2019. Jira. https://issues.apache.org/jira

[8] Muhammad Asaduzzaman, Chanchal K. Roy, Kevin A. Schneider, and Massim-

iliano Di Penta. 2013. LHDiff: A Language-Independent Hybrid Approach for

Tracking Source Code Lines. (2013).

[9] Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshy-

vanyk, and Andrea De Lucia. 2013. An empirical study on the developers’ per-

ception of software coupling. In Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 692–701.

[10] Pooyan Behnamghader, Duc Minh Le, Joshua Garcia, Daniel Link, Arman Shah-

bazian, and Nenad Medvidovic. 2017. A large-scale study of architectural evo-

lution in open-source software systems. Empirical Software Engineering 22, 3

(2017), 1146–1193.

[11] Raymond P. L. Buse and Westley R. Weimer. 2010. Automatically documenting

program changes. In IEEE/ACM International Conference on Ase.

19

https://cassandra.apache.org
https://help.eclipse.org
https://git-scm.com
https://git-scm.com/docs/git-log
https://github.com/GumTreeDiff/gumtree
https://www.eclipse.org/jgit
https://issues.apache.org/jira

Internetware’20, May 12–14, 2021, Singapore, Singapore Di Cui, Jiaqi Guo, Ting Liu, and Qinghua Zheng

[12] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. 2016. Using

Cohesion and Coupling for Software Remodularization: Is It Enough? ACM
Transactions on Software Engineering and Methodology (TOSEM) 25, 3 (2016), 24.

[13] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. 2008. Tracking Your

Changes: A Language-Independent Approach. IEEE Software 26, 1 (2008), 50–57.
[14] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. 2009. Ldiff: An

enhanced line differencing tool. In IEEE International Conference on Software
Engineering.

[15] Patricia Cohen, Stephen G West, and Leona S Aiken. 2014. Applied multiple
regression/correlation analysis for the behavioral sciences. Psychology Press.

[16] Di Cui, Ting Liu, Yuanfang Cai, Qinghua Zheng, Qiong Feng,Wuxia Jin, Jiaqi Guo,

and Yu Qu. 2019. Investigating the impact of multiple dependency structures on

software defects. In Proceedings of the 41st International Conference on Software
Engineering. IEEE Press, 584–595.

[17] Jeanr EMy Falleri, Flor E Al Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-grained and accurate source code differencing. automated
software engineering (2014), 313–324.

[18] Beat Fluri, M. Wursch, Martin Pinzger, and Harald C. Gall. 2007. Change Distill-

ing:Tree Differencing for Fine-Grained Source Code Change Extraction. IEEE
Transactions on Software Engineering 33, 11 (2007), 725–743.

[19] Ron N. Forthofer and Robert G. Lehnen. 1981. Rank Correlation Methods. Springer
US, Boston, MA. 146–163 pages. https://doi.org/10.1007/978-1-4684-6683-6_9

[20] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuan-

fang Cai. 2011. Enhancing architectural recovery using concerns. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software Engi-
neering. IEEE Computer Society, 552–555.

[21] Emanuel Giger, Martin Pinzger, and Harald C Gall. 2012. Can we predict types

of code changes? an empirical analysis. In 2012 9th IEEE Working Conference on
Mining Software Repositories (MSR). IEEE, 217–226.

[22] Masatomo Hashimoto and Akira Mori. 2008. Diff/TS: A Tool for Fine-Grained

Structural Change Analysis. In Conference on Reverse Engineering.
[23] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu,

and Wenyun Zhao. 2018. ClDiff: Generating Concise Linked Code Differences.

In ACM/IEEE International Conference on Automated Software Engineering. ACM,

679–690.

[24] Siyuan Jiang, Ameer Armaly, and Collin Mcmillan. 2017. Automatically Generat-

ing Commit Messages from Diffs using Neural Machine Translation. (2017).

[25] Miryung Kim and David Notkin. 2009. Discovering and representing systematic

code changes. In IEEE International Conference on Software Engineering.
[26] Miryung Kim, David Notkin, and Grossman Dan. 2007. Automatic Inference

of Structural Changes for Matching across Program Versions. In International
Conference on Software Engineering.

[27] Miryung Kim, David Notkin, Grossman Dan, and Jr Wilson, Gary. 2013. Iden-

tifying and Summarizing Systematic Code Changes via Rule Inference. IEEE
Transactions on Software Engineering 39, 1 (2013), 45–62.

[28] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shah-

bazian, and Nenad Medvidovic. 2015. An empirical study of architectural change

in open-source software systems. In Proceedings of the 12th Working Conference
on Mining Software Repositories. IEEE Press, 235–245.

[29] Duc Minh Le, Daniel Link, Arman Shahbazian, and Nenad Medvidovic. 2018.

An empirical study of architectural decay in open-source software. In 2018 IEEE
International Conference on Software Architecture (ICSA). IEEE, 176–17609.

[30] Mario Linares-Vasquez, Luis Fernando Cortes-Coy, Jairo Aponte, and Denys

Poshyvanyk. 2015. ChangeScribe: A Tool for Automatically Generating Commit

Messages. In IEEE/ACM IEEE International Conference on Software Engineering.
[31] Huihui Liu, Yijun Yu, Bixin Li, Yibiao Yang, and Ru Jia. 2018. Are Smell-Based

Metrics Actually Useful in Effort-Aware Structural Change-Proneness Prediction?

An Empirical Study. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 315–324.

[32] Hongmin Lu, Yuming Zhou, Baowen Xu, Hareton Leung, and Lin Chen. 2012. The

ability of object-oriented metrics to predict change-proneness: a meta-analysis.

Empirical software engineering 17, 3 (2012), 200–242.

[33] Paul W Mcburney and Collin Mcmillan. 2016. Automatic Source Code Summa-

rization of Context for Java Methods. IEEE Transactions on Software Engineering
42, 2 (2016), 103–119.

[34] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. 2015. Hotspot patterns: The

formal definition and automatic detection of architecture smells. In Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on. IEEE, 51–60.

[35] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. 2016. Decoupling

level: a new metric for architectural maintenance complexity. In Proceedings of
the 38th International Conference on Software Engineering. ACM, 499–510.

[36] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian

Marcus, and Gerardo Canfora. 2017. ARENA: An Approach for the Automated

Generation of Release Notes. IEEE Transactions on Software Engineering 43, 2

(2017), 106–127.

[37] Meng Na, Miryung Kim, and Kathryn S. Mckinley. 2011. Systematic editing:

generating program transformations from an example.

[38] Meng Na, Miryung Kim, and K. S. Mckinley. 2013. Lase: Locating and apply-

ing systematic edits by learning from examples. In International Conference on
Software Engineering.

[39] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Counsell, and Iman

Hemati Moghadam. 2012. Experimental assessment of software metrics using

automated refactoring. In Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement. 49–58.

[40] Matheus Paixao, Jens Krinke, Dong Gyun Han, Chaiyong Ragkhitwetsagul, and

Mark Harman. 2017. Are developers aware of the architectural impact of their

changes?. In IEEE/ACM International Conference on Automated Software Engineer-
ing.

[41] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel

Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-

tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155–1179.
https://doi.org/10.1002/spe.2346

[42] S. Rastkar and G. C. Murphy. 2013. Why did this code change?. In International
Conference on Software Engineering.

[43] Steven P. Reiss. 2008. Tracking source locations. (2008).

[44] Daniele Romano and Martin Pinzger. 2011. Using source code metrics to pre-

dict change-prone java interfaces. In 2011 27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 303–312.

[45] Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvidovic.

2018. Recovering architectural design decisions. In 2018 IEEE International Con-
ference on Software Architecture (ICSA). IEEE, 95–9509.

[46] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di

Penta. 2010. An empirical study on the maintenance of source code clones.

Empirical Software Engineering 15, 1 (2010), 1–34.

[47] Irene Tollin, Francesca Arcelli Fontana, Marco Zanoni, and Riccardo Roveda. 2017.

Change prediction through coding rules violations. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering.
61–64.

[48] Vassilios Tzerpos and Richard C Holt. 2000. ACDC: An Algorithm for

Comprehension-Driven Clustering.. In wcre. 258–267.
[49] Ye Wang, Na Meng, and Hao Zhang. 2018. An Empirical Study of Multi-entity

Changes in Real Bug Fixes. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 287–298. https://doi.org/10.1109/ICSME.

2018.00038

[50] Lu Xiao, Yuanfang Cai, and Rick Kazman. 2014. Design rule spaces: A new form

of architecture insight. In Proceedings of the 36th International Conference on
Software Engineering. ACM, 967–977.

[51] Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng. 2016. Identify-

ing and quantifying architectural debt. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 488–498.

[52] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. 2004. Predicting

source code changes by mining change history. IEEE Transactions on Software
Engineering 30, 9 (2004), 574–586.

[53] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi

Matsumoto. 2018. An Empirical Study of Design Discussions in Code Review. In

Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, New York, NY, USA, Article 11, 10 pages.

https://doi.org/10.1145/3239235.3239525

[54] Hao Zhong and Zhendong Su. 2015. An Empirical Study on Real Bug Fixes. In

Proceedings of the 37th International Conference on Software Engineering - Volume
1 (ICSE ’15). IEEE Press, 913–923.

[55] Thomas Zimmermann, Andreas Zeller, P Weissgerber, and Stephan Diehl. 2005.

Mining version histories to guide software changes. IEEE Transactions on Software
Engineering 31, 6 (2005), 429–445.

20

https://doi.org/10.1007/978-1-4684-6683-6_9
https://doi.org/10.1002/spe.2346
https://doi.org/10.1109/ICSME.2018.00038
https://doi.org/10.1109/ICSME.2018.00038
https://doi.org/10.1145/3239235.3239525

	Abstract
	1 Introduction
	2 Architectural Change Analysis Framework
	2.1 Phase I: Change Graph Construction
	2.2 Phase II: Architectural Change Mining
	2.3 Running Example

	3 Empirical Study
	3.1 Data Collection
	3.2 RQ1: How often do developers introduce architectural change commits?
	3.3 RQ2: What are common and risky intents under which developers introduce architectural change commits?
	3.4 RQ3: Are modified numbers of lines of code in code commits practical indicators of architectural changes?
	3.5 RQ4: Are involved numbers of source files in code commits practical indicators of architectural changes?

	4 Discussion
	4.1 Correctness Analysis
	4.2 Implications
	4.3 Threat to Validity

	5 Related Work
	5.1 Architecture Change Study
	5.2 Code Commit Analysis

	6 Conclusion
	Acknowledgments
	References

